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FOREWORD

The promise that data science and artificial intelligence (AI) hold to transform 
the delivery of healthcare is undeniable. Healthcare as a sector, with all of 
the longitudinal data it holds on patients across their lifetimes, is positioned 
to take advantage of what data science and AI have to offer. From diagnos-
tics, interpretation of lab tests and scheduling appointments to personalizing 
care, finding cures to conditions, and creating new and innovative solutions to 
long-standing problems – the opportunities are endless.

However, compared to other sectors, healthcare lags behind. We have seen 
how data and technology have helped to transform how these sectors deliver 
services to consumers; we need to learn from these examples and apply these 
lessons to the unique context of healthcare.

At the policy level, we see common problems, including the challenges of 
collection, curation and storage of data. We need to ensure that there are 
appropriate security and governance measures in place, to tackle the interop-
erability of software and to make sure that we have trained experts who can 
work with the growing complexity of data systems.

To maximize the potential of the data assets that health systems hold, we need 
clear policies to support their use and shape the future. Through our work 
on this forum, we have had the pleasure of working with a unique group of 
global experts with backgrounds in academia, policy, clinical care and industry 
to tackle the key policy issues in this area. We have formulated a series of 
recommendations that we hope will assist policymakers globally to realize the 
promise of data science and AI.

Professor Aziz Sheikh, OBE, FRSE, FMedSci 
Professor of Primary Care Research 
& Development and Director, Usher Institute 
of Population Health Sciences and Informatics, 
The University of Edinburgh

Professor the Lord Darzi of Denham, 
OM, KBE, PC, FRS
Executive Chair, WISH, Qatar Foundation
Director, Institute of Global Health Innovation, 
Imperial College London
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EXECUTIVE SUMMARY

Health system leaders across the world share common goals: to prevent, cure 
and manage illness; to deliver the best possible citizen and patient experience; 
and to do so in a financially sustainable way.

Over the past century, health system leaders have progressed toward these 
goals, aided by advances in science and technology: new vaccines, medi-
cines and surgical techniques; technologies, such as telehealthcare, which can 
dramatically improve access; and analytics to better measure the costs and 
variations of care provision. These factors contribute to improvements in life 
expectancy across the globe.

This report by the World Innovation Summit for Health (WISH) has brought 
together some of the world’s leading experts in health policy, data science and 
healthcare reform. We argue that health system leaders today can steer the 
next wave of progress in healthcare by harnessing advances in data science 
to generate valuable insights from the large, complex data sets accruing in 
health systems. Data science is already transforming other major sectors of 
human activity – from transportation to life sciences and financial services. In 
healthcare, these technological advances will make services more accessible, 
effective and efficient. They will help health practitioners diagnose people 
earlier, treat them faster and more effectively, and provide new opportuni-
ties for patient engagement, empowerment and self-care. In short, they will 
help achieve the triple aim of healthcare reform. Beyond personalizing and 
optimizing care delivery, data science also offers the promise of supporting 
health policy decision-making, better integration of healthcare with other 
sectors, and substantial time and efficiency savings in undertaking research 
and driving quality improvement initiatives.

However, healthcare is substantially behind many other industries in imple-
menting data science – in one estimate, for example, the US has gained no 
more than 10–20 percent of the total opportunity.1

Health systems will require five features to be successful:

1. Organization-wide data repositories

2. Data governance and security

3. Interoperability of data within and across health systems

4. Data science capabilities

5. Use and repeated reuse of data to improve decision-making and care.
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There are many challenges to realizing the full potential of data science in health 
systems. However, the possible rewards are enormous, and not just for individual 
patients. It is estimated that healthier and more productive populations would 
increase economic output by $10 trillion globally.2

Governments and policymakers can take four actions to start the journey 
toward data-enabled systems:

1. Provide national leadership that includes: ensuring clear executive account-
ability to liaise with the public and engage with critical stakeholders; 
developing and disseminating the overarching vision of a data-enabled 
transformation of health; and providing an accompanying, proportionate, 
regulatory framework

2. Identify and gain ‘quick win’ opportunities (first 12 months) to build 
engagement, experience and momentum

3. Develop and implement a medium-term strategy (over one to three years) 
to digitize and integrate data sets, establish governance arrangements and 
create centers of excellence for data science in health

4. Pursue a longer-term transformation plan (three to 10 years) to embed 
capability building within education structures and to continually refine 
data integration and regulatory frameworks.

This work will not be without its difficulties, but the prize for making progress 
will be substantial for patients. It will also be beneficial for nation states in terms 
of improved healthcare decision-making and health outcomes, reduced health 
expenditure, and job creation in data science and research. Given the current 
global shortage of talent in data science and AI, those countries that delay in 
embarking on the journey may find it very difficult to make up lost ground.
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SECTION 1. DATA SCIENCE AND AI ARE 
THE TOOLS OF THE 21ST CENTURY

What do ‘data science’ and ‘AI’ mean?

Data science refers to drawing insights from large and complex data sets. This 
includes collating, processing, analyzing and understanding the data. The term 
‘data science’ covers the methods, processes and systems used to do this. 
It encompasses both traditional statistical methods, applied to far larger and 
more complex datasets than was thought possible, and newer approaches 
made possible by artificial intelligence (AI).

AI, a subset of data science, refers to computers that can learn from data 
and interact with the human world. The goal is to give machines human-like 
cognition, meaning that they can ‘think’, and recommend actions based on 
that thinking, that they can predict outcomes and that they can learn. Today, 
AI is primarily used to augment human decision-making. However, there is 
an emerging body of evidence that computers can – in specific, constrained 
tasks – deliver comparable or even better-than-human performance, usually at 
greater speed and substantially lower cost.3, 4

AI can be characterized by four broad technologies:5

1. Natural language processing (NLP): Siri and Alexa, Twitter analytics and 
virtual assistants all perform NLP. Technology’s ability to analyze human 
language, extract meaning and sentiment, and reply intelligibly is trans-
forming our communication with each other and with machines

2. Computer vision: At the heart of every self-driving car or number-plate 
recognition system, computer vision comprises the extraction of informa-
tion from images

3. Machine learning: This comprises programs and tools that recognize patterns 
in data and make predictions based on those patterns – or that can learn from 
data. The distinctive feature is that the system must learn the mapping from 
input to output (for example, from a collection of test results to a diagnosis) 
by itself – it is not provided with an explicit preexisting model

4. Robotics: This covers machines’ physical navigation and interactions with 
the human world.

These technologies are not mutually exclusive and are increasingly found 
within the same AI tools and products.
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Why is now the time to invest in data science 
in health?

Over the last 10 years, there have been three shifts in the use of data (see Figure 1). 
First, people and systems now create much more digital data than ever before, 
so there is more available for analysis6 – 90 percent of the world’s data was 
created in the last two years alone.7 Second, it is now possible to store and 
process huge data sets more cheaply – at around 10 percent of the cost of 
a decade ago8 – thanks to cloud computing and advances in silicon chip tech-
nologies. Third, thanks to innovations in the design and use of processing 
power, complex machine learning can now interpret the data that is created, 
stored and processed. Together, these three shifts have created an explosion 
in interest and investment in data science which, while not without risks, has 
the potential to transform every part of daily life.

Such a transformation is needed more than ever in health systems, which are 
facing increasingly complicated challenges. More patients are suffering from 
complex conditions with multiple causes and comorbidities, such as diabetes 
and child obesity. In more and more cases, even diagnosis requires input from 
several specialties. This complexity cannot be easily modeled with existing 
tools. However, new data sets and processing technology offer new capa-
bilities for understanding this complexity. There is further potential benefit 
in sharing anonymized data with citizens, universities and industry, in open 
data formats, to develop shared intelligence that emerges from collaboration, 
collective effort and competition. (For example, the Opendata Transparency 
area of the Portuguese NHS uses application programing interfaces for data 
interoperability.)9 This convergence of need and opportunity makes now the 
ideal time to invest in data science in health systems.10

Consumer enthusiasm to participate in this technology is substantial across the 
world. Already, 35–40 percent of people in India and Qatar with internet access 
have access to their health records through a computer or mobile device. This 
proportion rises above 45 percent in the US and China.11 For people with an 
electronic health record (EHR), more than 50 percent are active users (that is, 
downloaded their EHR in the last three months).12 In regions where patients 
have less reported access to EHRs, such as the UK (at 14 percent), almost 60 
percent would find such access useful. Consistently across these five regions 
(the US, China, India, Qatar and the UK), 30–60 percent of people report that 
they would want their health data to be shared to improve care delivery, to 
conduct research and to inform health planning. (Other surveys found that 
more than 75 percent of Americans are interested in sharing their health infor-
mation to get better care, and about 60 percent of British people would allow 
their health data to be used for medical research.)13–15 This consumer interest 
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also extends to AI, with 55–65 percent of people stating that they would be 
happy for their clinicians to use AI decision-support software in their care – 
although there is much lower approval for the use of autonomous AI clinical 
decision-making systems.16

Figure 1. Data availability, storage and analytics approaches, 1990–2018

Source: Dave Evans, The Internet of Things: How the next evolution of the internet is changing 
everything (2011)
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SECTION 2. DATA SCIENCE CAN HELP 
TRANSFORM HEALTHCARE

Many health systems are facing the same challenges: predicting and 
preventing the onset of avoidable disease; determining the safest and 
most effective treatment option; and delivering cost-effective care. Data 
science can help address all three challenges. From risk detection, triage 
and scheduling, through diagnosis, prescription and treatment, to patient 
engagement and public health, data science can contribute to efforts to 
optimize resources, better engage patients and improve the quality and 
outcomes of care.

However, healthcare has lagged behind other sectors in delivering on this 
potential. AI adoption in healthcare is low, and the projected increases in 
spending are well below other leading sectors (see Figure 2). Research by 
the McKinsey Global Institute found that the US has gained no more than 
10–20 percent of the opportunity offered by data science and AI in health-
care*, compared to 30–60 percent in retail and location-based services.17

Specifically, healthcare is behind in delivering three of the building blocks 
needed for successful data science and AI integration:

1. Creating the large, integrated and interoperable data sets necessary for the 
development of new tools

2. Establishing the governance structures and security measures required to 
handle sensitive data – although some countries are making some headway 
with this, such as the Health Insurance Portability and Accountability Act 
(HIPAA) of 1996 in the US

3. Attracting the scientific talent needed to design complex systems. This delay 
is likely due, in part, to the relatively fragmented nature of the healthcare 
sector and the economic realities of public healthcare systems. However, 
the experience of other sectors shows that these challenges can be over-
come with sufficient leadership and commitment from policymakers.

* Estimate based on analysis of the proportion of savings identified in 2011 that had been 
gained by 2015 in the US health sector and the European public sector.
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Figure 2. Sectors leading in AI adoption today

1Based on the midpoint of the range selected by the survey respondent.
2Results are weighted by firm size. 
Source: McKinsey Global Institute, AI adoption and use survey
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 • Many parts of China have moved to a paperless and cashless society, with 
the near-complete engagement of consumers on the WeChat platform. 
A Beijing resident could start her day by checking out a friend’s new haircut 
on WeChat, then booking an appointment at the same salon. From the 
salon chair she can make a reservation for lunch at a local restaurant, and 
preorder and prepay for the food. The platform even allows for donations 
to rough sleepers by scanning a Quick Response (QR) code. All of this, 
without ever leaving the WeChat app.

What benefits could data science bring to 
health systems?

If similar techniques were implemented in health systems, it would be possible 
to achieve the following:

 • Better forecast population trends: Data science can help to more accu-
rately predict disease burden and costs, identify high-risk patient groups 
and target prevention therapies. Johnson & Johnson already use machine 
learning to predict demand for their pharmaceuticals. Mature health systems 
could save up to 10 percent of total care costs by forecasting population 
health and targeting patient screening.20

 • Deliver more preventative care: Most healthcare expenditure today is 
focused on treatment rather than prevention (only around 9 percent of total 
US health expenditure is related to prevention).21 Data science can expand 
research into risk factors and biomarkers, support earlier treatment and, 
ultimately, enable interventions that prevent disease from occurring.22 
Screening programs could become more targeted and accurate, reducing 
the risks and costs associated with false positive identification.

 • Further personalize treatments: Using results from large population 
studies (such as the Qatar and UK Biobank projects), AI could combine 
genetics, biology, behavior and patient preference to select the most effec-
tive and appropriate treatment pathways. Personalized treatment could be 
more effective and feel more human than generic models of care. It is esti-
mated that these changes could increase average life expectancy by up to 
1.3 years and deliver a global economic impact of $2–10 trillion.23

 • Improve user experience: Currently, it is estimated that US doctors only 
draw on about 20 percent of available trial results when diagnosing and 
treating cancer patients.24 In the future, virtual assistants will provide clini-
cians with the latest research at a single voice command. Patients, too, 
will have access to health advice and lifestyle support from their mobile 
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phones. Both Babylon Health in the UK and Gyant in the US already run an 
AI-enabled chatbot for triage and can support live video consultations with 
primary care doctors.25, 26

 • Improve productivity and reduce costs: AI can automate and optimize 
tasks across a hospital. AI-supported diagnostic tools could be faster, 
cheaper and more accurate than current practice. Triage and sched-
uling could be supported by efficient algorithms. In nursing alone, 30–50 
percent improvements in productivity may be possible using AI-enabled 
tools.27 System-wide efficiencies, including the automation of repetitive 
tasks, could lower health spending as a share of gross domestic product 
(GDP) by two base points in developed economies.28

Figures 3 and 4 illustrate the experience of a cancer patient in a hospital 
environment with these types of data science systems.

Figure 3. A data-enabled healthcare ecosystem
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research immediately 
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Figure 4. Precision medicine in practice
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SECTION 3. MOVING TO A FULLY DATA-
ENABLED LEARNING HEALTH SYSTEM

To date, no sector has made the transition to a fully data-enabled system. 
However, lessons can be learnt from health systems that have taken initial 
steps, as well as from other, more advanced sectors:

 • Interim steps in themselves provide major benefits; it is not ‘all or nothing’

 • Different parts of the system can progress at different speeds, and early 
adopters can inspire others

 • Difficult questions, such as how to manage data security, have already 
been answered elsewhere (for example, in the financial sector) and can be 
adapted for healthcare

 • The need for new skill sets and roles will evolve gradually, meaning there is 
time to recruit and adapt

 • While many of the initial benefits of this journey may be outside the health 
system itself (for example, in the life sciences sector, academia and tech-
nology start-ups), if health systems make the investment, there are effective 
ways to channel the benefits back into health.

Making a transformation of this scale successful requires a clear vision, 
sustained leadership and a plan that balances short-term goals with longer-term 
investment. Without such a plan, there is a risk of making investments that do 
not bring the right benefits and returns, as was the case for England’s National 
Programme for Information Technology.29, 30

Table 1 gives an illustration of the transformation journey. Although this shows 
the journey as a simplified linear process, our experience suggests that some 
parts of the health system will progress faster than others. The ‘early adopters’ 
can demonstrate capabilities and impact, share learning and inspire those in 
other parts of the system.
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Where most health systems are today

Most health systems today are at the start of the journey. Many high-income 
countries use digitized EHRs in primary care, but still use a mix of paper records 
and notes with some digital inputs in secondary care.* Where EHRs are used: 
they are usually available only to the provider that created them; they are 
incompatible with other settings, organizations and systems; and they do not 
routinely use machine learning or NLP.

Clinical guidelines face similar challenges. While guidelines are available for 
many conditions and settings, they are often static (that is, they require peri-
odic reviews from teams of experts). They are not linked to decision-support 
tools and EHRs, and they are based solely on the outcomes of published clin-
ical trials. Consequently, clinicians predominately rely on their own learning, 
experience and judgment to make decisions for individual patients.

Integrated, interoperable EHRs

There are examples where leading health systems have successfully introduced 
integrated and interoperable EHRs. Just as emails and calendars can now sync 
across devices, a patient’s full health record and care history can be accessed 
by the treating clinician at the point of care in all settings. Not only does this 
eliminate duplication, it also enables better continuity of care.

Some countries, such as Estonia, have invested in personal health records 
(PHRs).31 These can be managed or even owned by patients, and can combine 
patients’ histories, scans and test results with data from wearable technologies 
and lifestyle apps. Patients can take ownership of their health data and make 
decisions accordingly. At the same time, the large data set can help improve 
clinical practice. Similar innovations are taking place in finance, where the UK’s 
‘open banking’ standards and regulations are transferring ownership of finan-
cial data to consumers themselves.32

* The US is somewhat of an exception, where EHRs are more established and prevalent in 
secondary care settings.
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Routine use of algorithms for decision support

Innovation today is focused on using algorithms to make decisions. Complex 
algorithms are increasingly able to diagnose patients more accurately than 
clinicians, and such tools are already starting to gain regulatory approval (see 
Case study 5). Even simple models built on large data sets can transform clinical 
practice. For example, a model used at US care consortium Kaiser Permanente 
to predict sepsis risk reduced antibiotic use in infants by 50 percent.33

It is not just clinical decisions that can be improved. Algorithms can also 
transform the efficiency of hospitals and primary care facilities. For example, 
patients can now receive health advice and efficient triage into primary care 
services using mobile apps such as Tencent’s WeDoctor, Ping An’s Good 
Doctor and Gyant.

Personalized treatment and precision medicine

Today, most treatment decisions follow standardized guidelines based on 
clinical trials. However, participants in clinical trials tend to differ from treat-
ment populations in the real world, which can limit the predictive power of 
the published evidence. Flatiron Health are gathering and analyzing real-world 
data from EHRs to augment evidence for new therapies.34

In a few disease areas, such as cystic fibrosis or some cancers,35 treatment can 
now be precisely tailored to the genetics of the patient or tumor. For example, 
at the Dana-Farber Cancer Institute, clinicians routinely use genomic sequencing 
in 40 percent of leukemia and lung cancer patients to select specific, targeted 
therapies. Recent results demonstrate that genetics can also be used to iden-
tify patients at risk of steroid-induced growth stunting.36

These early steps show promise, but, the potential of personalized medi-
cine is much greater. Health outcomes are influenced by a wide range of 
factors, including genetics, behaviors and social and environmental circum-
stances (see Figure 5). Data science could consider all these factors using data 
inputs such as EHRs, images and wearable devices to create a personal treat-
ment plan. This will help identify risk factors for diseases and biomarkers for 
effective treatment regimes. Organizations are already investing in acquiring 
and analyzing such data for population-size samples of patients (for example, the 
UK Biobank, deCODE genetics, CARTaGENE biobank, Qatar Biobank for Medical 
Research, Estonian Genome Project and the Nord-Trøndelag Health Study).
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Figure 5. Factors affecting health outcomes

Source: “Health policy brief: The relative contribution of multiple determinants to health outcomes”, 
Health Affairs (2014)
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deliver great benefits. In Portugal, a map showing hospitals’ monthly waiting 
times was made public, allowing general practitioners (GPs) and their patients 
to make informed choices about referrals. This was so successful at optimizing 
utilization that the government lowered their maximum outpatient waiting time 
guarantees by 30–90 days for some services.37 The Portuguese national health 
system also launched the free MySNS Tempos app, which shows users real-time 
waiting times for emergency departments to encourage a more rational use 
of services.38–40

* For more information, see: Katikireddi SV et al. “Assessment of health care, hospital admissions, 
and mortality by ethnicity: Population-based cohort study of health-system performance in 
Scotland”, The Lancet Public Health (2018).
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However, there is an even greater potential in the integration of health data 
sets with those that include education, transportation, pollution and other soci-
etal data. Together, these data sets will enable more precise forecasting and 
more intelligent use of scarce resources (see Figure 6). One early example is the 
Artificial Intelligence in Medical Epidemiology (AIME) platform, which predicts 
the timing, geographic location and spread of a dengue fever outbreak, three 
months in advance, with 86 percent accuracy.41

Figure 6. Data science and policy, planning and evaluation
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the latest technology and data analysis. An emergency department case study 
measured a 26 percent reduction in workload following partial automation, and 
a 48 percent reduction following full automation. A reduction in workload does 
not necessarily imply a reduction in staff, but can lead to redeployment of staff 
into more useful activities.42 , 43

Ultimately, we will see AI-enabled healthcare facilities linking to ‘smart homes’ 
and ‘smart cities’ that will monitor individuals’ health behaviors and biometric 
signs. These will prompt patients and healthcare professionals to make better 
informed decisions and more timely interventions.

This convergence will allow health systems to continuously learn and improve, 
on the basis of routine, systematized and automated analysis of the perfor-
mance data generated. In a learning health system, a cyclical process is set 
up, whereby data sets are converted into knowledge, knowledge is translated 
into practice and the results of that implementation create new data, which 
converts into further insight, which feeds into further stages of the cycle (as 
shown in Figure 7).44

Figure 7. The Learning Health System: From data to knowledge 
to performance

Source: Adapted from Friedman, CP et al (2017)45
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SECTION 4. THE FIVE BUILDING BLOCKS 
OF TRANSFORMATION

To realize the potential of data science in health, policymakers need to create 
the environment and conditions for it to flourish. This includes creating the 
necessary infrastructure and incentives, but the starting point is an effective 
strategy. Such a strategy should include five building blocks (see Figure 8):

1. Organization-wide data repositories

2. Data governance and security

3. Interoperability of data within and across health systems

4. Data science capabilities

5. Use and repeated reuse of data to improve decision-making and care.

1. Organization-wide data repositories

Data science requires high-quality, accessible data sources with large sample 
sizes. To reap the benefits of data science, organizations first need to gather 
and store data digitally. For example, a collection of carefully labeled, curated 
data sets of thousands of skin melanoma images can be used to develop a tool 
that can diagnose malignant tumors more accurately than human special-
ists (see Case study 5). To collect the volume of images required, several test 
centers must use the same systems and, work to the same quality standards 
and share their results.46

Single-application tools like this are of great value, but the potential impact 
grows as the scale of the data repository and its linkages increase. Collating 
EHRs with scans, pathology reports, test results and more will enable unprec-
edented improvements in care, patient outcomes and operational efficiency. 
As with the skin melanoma images, the key to success is collating detailed 
information on millions of individuals.

In 2008, Estonia implemented an eRecord system (see Case study 1) that digi-
tally records and stores every interaction a patient has with the health system. 
This benefits patients because it avoids the need to repeat their medical history 
on every admission. It also provides population-level data sets that can help in 
the development of new clinical tools and operational processes.
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Figure 8. Building blocks for data science in health

Source: Derived from Cresswell KM et al47

2. Data governance and security

Clearly, data repositories that hold sensitive and potentially identifiable 
patient information are a security concern, and patients understandably worry 
about the inappropriate sharing and use of their data. Healthcare is particu-
larly vulnerable to cyberattack due to its limited resources, fragmented 
governance structures and cultural behaviors. Compared with other critical 
sectors, healthcare has chronically underinvested in IT, and is one of the most 
targeted sectors for cybercrime globally. The 2017 disruption to the National 
Health Service (NHS) in the UK caused by WannaCry ransomware was a prime 
example of a system-wide incident that affected more than 600 organizations 
and many thousands of patients.48
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Good security is about controlling risk, reducing vulnerability and mitigating 
impact. All healthcare organizations need to respond to the growing cyber-
security challenge, and policymakers must instigate careful governance and 
security arrangements, and communicate these arrangements to the public.

Architects of data repositories must answer five questions:

1. Who can access which data and under what circumstances?

2. How do we prevent and detect unauthorized access to data?

3. How do we ensure the accuracy and consistency of data?

4. How do we ensure traceability and accountability for each interaction 
made with the data?

5. Where does liability rest for breaches of data security or erroneous recom-
mendations arising from automated algorithms?

In designing a system that addresses these points, a few basic principles apply:

 • Only collect, store and give access to essential data: For example, 
a company developing systems to improve surgery scheduling may only 
need access to event timings, diagnoses and outcomes, but not medical 
histories or scan results. A patient, however, should have access to all data 
pertaining to themselves. (We note that this provides a tension with AI 
analysts who typically want access to as much data as possible.)

 • Use unique, consistent but pseudonymous patient identifiers to link 
records across the system.49

 • Consider using local or cloud-based repositories rather than one central 
data bank. This has two advantages, first, it enables access to the original 
source of data prevents the risk of introducing errors during transmission 
and replication; second, in the event of a security breach, only a small 
portion of data would be at risk, not the entire data set.

 • Use encryption and enterprise-grade security measures: These systems 
are standardized (for example, in ISO 18033 for IT security techniques)
across the financial, telecommunications and consumer industries.
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 • Ensure traceability and transparency of all interactions with data: 
Estonia allows patients to access a log of all interactions with their data (see 
Case study 1). DeepMind Health are developing similar processes based 
on ideas from Blockchain (the Verifiable Data Audit project50), to allow 
hospitals to check that records are being used appropriately.

3. Interoperability of data within and across 
health systems

AI, and in particular machine-learning techniques, is most powerful when it 
uses different data types from a range of sources. For example, flu-forecasting 
tools can combine geolocation data, past flu trends and Twitter feeds to fore-
cast influenza outbreaks with up to six weeks’ lead time.51 Further studies have 
shown that disease outbreaks can be observed through Google search terms – 
for example, observing trending search terms that correlate with outbreaks of 
thunderstorm-induced asthma.52 For these purposes, data can be integrated 
at two scales: within an individual tool or device, and at a larger system scale.

Within a single tool or device, the integration of multiple different data sources, 
even if collected locally, can give powerful results. For example, the continuous 
monitoring of Rolls-Royce jet engines uses machine-learning systems to fuse 
multiple data sources in the engine and its surroundings to warn of defects. 
This data use could transform the evaluation of prosthetic joints. Implant integ-
rity can be monitored live using wearable sensors, using a combination of 
functional and movement-related metrics, rather than just x-ray images.

At a larger system scale, data can be integrated across an entire national 
health system and then combined with other public records. One approach 
to ensuring interoperability of health records is to select a single EHR system 
across all providers, as in Qatar (see Case study 3). This approach does, 
however, risk creating a monopoly vendor. An alternative is to restrict EHR 
choices to a subset with compatible interfaces. Estonia (see Case study 1) has 
successfully linked EHRs across the country to a wide range of other govern-
ment eRecords and external data sets. While data sets are stored locally, 
they can be accessed remotely and linked using unique identifiers for each 
citizen. Integration like this requires significant mutual co-operation and policy 
oversight. While this may be challenging in healthcare, it is not unachievable. 
Several other industries have successfully managed to standardize complex 
systems, such as competing mobile telecommunications manufacturers that all 
use the same communication protocols.
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Policymakers have an important role to play in promoting common standards 
and open source tools, to support the development of publicly accessible 
resources. Successful examples from healthcare include the Digital Imaging 
and Communications in Medicine (DICOM) standards53 used in medical imaging, 
and the open-source clinical management systems, such as Open Source Clin-
ical Application Resource (OSCAR)54 used in parts of Canada.

4. Data science capabilities

Most health systems do not have advanced capabilities in data science. In the 
short term, skill gaps can be filled through partnerships and talent acquisition. 
In the medium- to longer-term, countries will need to train a broad pool of 
health data scientists.

Attracting and retaining talented staff

Attracting data science talent to work in health systems can be challenging. 
In part, this is because it is not feasible to offer salaries comparable to the 
private sector. However, the health sector offers a different value proposition 
based on the impact and public benefit of the work. Health systems need to 
invest in dedicated career tracks or hybrid models of employment to attract 
and retain top talent.

Health systems will further benefit if medical training programs prepare future 
health professionals for the importance of big data analysis in clinical deci-
sion-making, performance monitoring and financial management.

The most efficient way to use a small number of data scientists in a health 
system is to establish centers of excellence to drive innovation (see Figure 9). 
These centers must have access to data, the full range of skill sets required and 
interactions with healthcare leaders. As data science matures, centers of excel-
lence can be used to demonstrate their value and to train new talent.

Figure 9. Skills and disciplines needed by centers of excellence
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The key roles within a center of excellence are:

 • Chief information/technology officer who the center of excellence 
reports to

 • Data Engineers who access, assess, import and clean data, and determine 
the data management approach, hosting environment, security and toolset

 • Data Scientists who develop models, evaluate performance and transform 
model outputs into usable tools

 • Delivery Architects who assess and sustain impact against the team’s 
objectives, and drive adoption of tools throughout the organization

 • Translators who define and prioritize problems to be solved, and identify 
and locate required data.

Centers of excellence have been the favored model to underpin large-scale 
analytics transformations in the insurance, finance and consumer sectors.

Partnership

Health organizations can capitalize on existing expertise by partnering with 
external agencies. For example, most teaching hospitals already have rela-
tionships with academic institutions. Partnering with technology start-ups or 
industry leaders – who have extensive data science capabilities, but lack clin-
ical expertise – can be another simple way to grow skills quickly. For example, 
the Beth Israel Deaconess HealthCare system (Case study 4) has partnered 
with data scientists at Amazon and Google to deliver 11 AI-enabled system 
innovations in less than two years.

Training

To build the skilled workforce needed in the longer term, governments and 
health systems need to consider the entire learning arc, beyond primary and 
secondary education. For example, massive open online courses (MOOCs) can 
be used to train a workforce on data security. Also, undergraduate and post-
graduate courses on data science can be offered to unskilled workers and 
health professionals. Clinical and executive leadership courses on data and 
data science are also required, such as that offered by the UK’s NHS Digital 
Academy (Case study 2).
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5. Use and reuse of data to improve 
decision-making and care

The fifth component that health systems must get right is the regulatory envi-
ronment. To ensure that systems can continue to learn and improve based on 
the data collected, they must be able to use and repeatedly reuse the data for 
multiple purposes.55 Regulatory issues in data science are related to two areas: 
consent and device approval mechanisms.

Consent

Traditionally, patients have been asked to give informed approval for their data 
to be used for a specific reason, for example to develop a new cancer-screening 
tool. However, this model prevents the patient’s data from being reused for 
a different research purpose, limiting the potential of large, integrated data sets.56

A new approach, termed broad consent,57 asks patients to agree to their data 
being held for a much longer period, and being used for a wider range of appli-
cations. Consent is still specific regarding who can use the data and for what 
purpose – for example, for the improvement of the design and provision of 
higher-quality, lower-cost care – but more exact projects need not be spec-
ified. This model has been taken by major population health studies, such as 
the UK Biobank58 and the Qatar Genome Programme,59 and has recently been 
incorporated in US regulations on the use of human subjects in research.60

Device approval mechanisms

Introducing new software for aiding clinical decisions and operational practices 
may require regulatory approval. This can involve clinical trials to prove that 
these tools are at least as effective as existing techniques. Although this process 
is typically straightforward – several image diagnostic companies have won 
Food and Drug Administration (FDA) and/or European Conformity (CE) approval 
for the use of AI in clinical diagnostics (see Case study 5) – it can be slow.

Regulators should think carefully about the burden of proof required for poten-
tially transformative solutions, and the imposed time to market. The FDA, for 
example, has recently downgraded the requirements for radiological cancer 
diagnostic tools to Class II, meaning that new products need only demonstrate 
substantially equivalent performance to a current legally marketed device. 
In addition, the US 21st Century Cures Act set up an expedited access pathway 
for FDA clearance to fast-track devices that offer significant advantages over 
existing alternatives.61 Such changes improve the time to take products to 
market. This makes it easier for developers, especially start-ups developing 
a single product, to gain financial backing.
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CASE STUDY 1
Estonia’s eHealth system

Strategic building blocks 
1. Data repositories; 2. Data governance and security; 
3. Interoperability of data; 5. Use and reuse of data

Since the late 1990s, Estonia has been moving its 1.3 million citizens to a digital 
government model. Under the leadership of a national Chief Information Officer, 
citizens can now vote, manage their tax, manage their education and public 
services, and control their health records online. The benefits to the citizen are 
clear: transparency, speed and ease of use. For the state, the benefits are enor-
mous: Estonia estimates that it saves 2 percent of its GDP each year in salaries 
and expenses through digitization.62

There are several important features of Estonia’s eHealth system:

 • Every citizen owns their own data: Each person can share and control 
access to their data.

 • Each record is linked by a unique citizen identifier (ID): Each citizen can 
be identified and linked across all public health databases. Citizens also 
have a cryptographically assured digital signature, which carries the same 
legal weight as a written signature.

 • ‘Once only’ policy: Government will ask for a piece of information about 
a person only once. Furthermore, data sets are stored where they are 
generated. For example, a dentist’s practice holds its own data, as does 
a hospital and a GP surgery. This practice greatly increases cybersecurity – 
if one server is compromised, then only limited amounts of data are at risk.

 • Data sets are linked nationwide by the X-road system: This securely 
connects databases across the country over the internet. A doctor can call 
up patients’ histories, scans and test results, accessing information directly 
from the relevant systems.

 • All interactions with records are logged using a blockchain-style ledger. 
This allows patients to monitor every interaction that is made with their 
data. High-profile cases illustrating the transparency this brings include 
several GPs who looked at the records of the former Prime Minister after 
a skiing accident – these doctors were proactively identified and lost their 
license to practice.
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 • Consent management: Estonia is currently adopting Finland’s mydata.org 
system which allows individuals to provide consent for their data to be 
shared for scientific purposes, and to charge companies for their use in 
commercial research.

Key lessons: Estonia demonstrates the importance of early and ongoing 
public engagement, strong and pragmatic leadership, and clear legal govern-
ance. While the country is small, this can be a model to other systems looking 
to enable a data-science transformation in healthcare.

http://mydata.org
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CASE STUDY 2
The UK’s commitment to developing health IT 
capabilities

Strategic building blocks 
1. Data repositories; 3. Interoperability of data; 
4. Data science capabilities; 5. Use and reuse of data

The UK was the first country in the world to develop a national health IT strategy. 
However, this strategy largely failed to realize its potential to improve care and 
health outcomes. Part of this failure has been attributed to focusing too much 
on implementing EHRs without investing in how the digital data would or could 
be used to drive transformational change.

The UK Government has learned from this and other international experiences, 
and has reprioritized digital maturity and clinical and data science capabilities 
in the NHS. It has created four training organizations: the NHS Digital Academy 
to train chief clinical information officers and chief information officers in data 
science skills and leadership, the Farr Institute, Health Data Research UK (HDR 
UK), and the Alan Turing Institute. These organizations are simultaneously 
developing academic health data science capabilities on a national scale. For 
example, 21 universities are working together in six regional Substantive Sites 
in HDR UK. There is also a very deliberate attempt, catalyzed by the UK Life 
Sciences Industrial Strategy, to stimulate data-driven innovation and job and 
wealth creation.

Key lessons: Health technologies such as EHRs are important, but are insuf-
ficient on their own. The focus needs to be on maximizing the opportunities 
and capabilities to securely and repeatedly use data for clinical, operational 
and academic benefits. Partnerships working across traditionally competitive 
organizations are essential.
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CASE STUDY 3
Qatar’s focus on data-enabled healthcare

Strategic building blocks 
1. Data repositories; 3. Interoperability of data; 
5. Use and reuse of data

Qatar has implemented one EHR system across the country, making the entire 
population’s health records interoperable. Furthermore, government funding is 
being used to improve and prioritize patients’ interactions with the care system. 
For example, the Qatar Computing Research Institute (QCRI) are developing AI 
tools that can translate into different languages for international patients, with 
around 90 percent accuracy. They are also developing mobile apps that can 
estimate body mass index (BMI) from facial images, and monitor children’s life-
style, food habits and sleeping patterns using wearable sensors.63, 64

Key lessons: Moving to one single EHR system, or mandating that different 
EHR systems are compatible, makes it easier to build the population-level data 
sets needed for AI.
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CASE STUDY 4
Beth Israel Deaconess HealthCare system

Strategic building blocks 
4. Data science capabilities; 5. Use and reuse of data

The Beth Israel Deaconess Healthcare System includes 2,600 physicians across 
four hospitals. It is one of the leading centers of data science innovation in 
US healthcare. Its success has been driven, in part, by mandating tight inter-
operability of EHRs, and by moving its data hosting to the cloud. However, 
crucially, the hospital network has also included skilled data engineers in its 
organization structure.

Amazon and Google employees were brought in and given access to 7 peta-
bytes of data. The strength of this collaboration has greatly increased innovation. 
Within two years, operational tools were developed to:

 • Automate repetitive tasks – AI can classify 99.9 percent of documents and 
help with information input65

 • Improve efficiency in operating theaters by 30 percent – AI can predict 
exactly how much time to schedule for a particular patient–surgeon 
combination66

 • Reduce human error in the detection of breast cancer from lymph node 
biopsies by 85 percent using a deep-learning image analysis tool.67

Key lessons: Partnering with existing technology leaders and embed-
ding talent within health organizations facilitates faster innovation and 
grows capabilities.
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CASE STUDY 5
Image analysis tools for clinical decision support

Strategic building blocks 
1. Data repositories; 3. Interoperability of data; 
5. Use and reuse of data

AI is now able to process images with a high degree of accuracy, even outper-
forming humans in some cases. This capability can be used to diagnose patient 
images from anywhere in the world. There are several examples:

 • Israeli start-up Zebra Medical Vision offers image analysis tools to help diag-
nose osteoporosis, emphysema and brain hemorrhages. Since algorithms 
are cheap to run, this clinical support can cost as little as $1 per scan.

 • Ping An Healthcare and Technology developed world-leading AI-based 
lung nodule detection systems for CT scans,68 which are being rolled out 
across hospitals in China.

 • A Stanford University platform uses mobile phone images to detect skin 
cancers as accurately as a dermatologist. This provides a route for quick, 
accessible screening for melanoma worldwide.69

 • QuantX is a computer-aided breast cancer diagnosis platform for magnetic 
resonance imaging (MRI) scans. QuantX received fast-tracked regulatory 
approval because the US FDA prioritizes treatments that can offer substan-
tial increases in care quality.

 • ET Medical Brain, Alibaba’s cloud-based solution, combines data hosting 
and image diagnostics. It is a leading AI-enabled health solution in China, 
working in partnership with hospitals to access data and develop tools. 
One tool detects thyroid cancer from ultrasound images with an 85 percent 
success rate, better than the human rate of 60–70 percent.70

Key lessons: Algorithm-based diagnostics are developing quickly, and often 
deliver rapid return on investment. Smoothing regulatory pathways may lead 
to more rapid private investment in this area.
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CASE STUDY 6
DeepMind Health71

Strategic building blocks 
2. Data governance and security; 5. Use and reuse of data

DeepMind Health is a British AI company within the Alphabet group. Their health 
effort was launched in early 2016 and is currently divided between direct-care 
tools and AI research.

Their direct-care tool, Streams, is used by clinicians at the Royal Free London 
NHS Foundation Trust. The Streams app escalates the right information about 
a patient to the right clinician at the right time, reducing the use of paper-based 
systems, pagers and desktop computers.

Early in the Streams project, the UK Information Commissioner (a data regu-
lator) raised concerns about the Royal Free Trust sharing patient records with 
DeepMind. In response, DeepMind took steps to become one of the most 
transparent companies working in health. It appointed a panel of independent 
reviewers, worked with a group of patients and carers, and published its 
contracts with NHS partners. DeepMind has now signed partnerships with three 
further UK-based hospital groups to deploy Streams over the course of 2018.

Key lessons: Giving private companies access to patient data creates obvious 
security concerns. Careful regulation is required and good practice by private 
companies can mitigate risk and allay public concerns.
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CASE STUDY 7
Flatiron Health

Strategic building block 
5. Use and reuse of data

Flatiron Health has designed a technology platform that enables cancer 
researchers and care providers to use data and analytics to better understand 
the journey and clinical outcomes of a cancer patient. Care providers enter 
data which can then be used by other care providers and by pharmaceutical 
companies for a fee.

Flatiron Health carefully curates its data and extracts information that is often 
lost in free-text fields. This gives users a much more powerful data set to accel-
erate research and generate clinical evidence in order to improve patient care.

Key lessons: Allowing the reuse of high-quality data sets between different 
groups, such as care providers and pharmaceutical companies, for different 
purposes can maximize the benefits to patients and to the healthcare system 
as a whole.
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SECTION 5. POLICYMAKERS CAN ACT NOW 
TO START THE JOURNEY

Governments and policymakers who wish to start embedding data science and 
AI technology into their health systems need to consider taking four actions:

1. Provide national leadership for data science and AI in healthcare

2. Identify and gain ‘quick win’ opportunities (first 12 months)

3. Set strategic priorities for the medium term (one to three years)

4. Pursue a longer-term transformation plan (three to 10 years).

1. Provide national leadership for data science 
and AI in healthcare

Responsibility for transitioning to a data-enabled healthcare system could 
sit either within an individual ministry (such as the Ministry of Health) or be 
assigned to a cross-governmental entity set up specifically for this purpose. 
For example, Thailand set up its Health Promotion Foundation, Thai Health, to 
be chaired by the Prime Minister, with representatives from all relevant minis-
tries on its Board. Countries that have made the most rapid progress in data 
science – for example, Estonia – tend to have taken this cross-sectoral approach.

The leadership body’s responsibilities should include:

 • Communication: Tell the public about the potential risks of the program, 
such as security breaches, and how these are being mitigated, as well 
as the benefits, including greater convenience, more transparency and 
better patient care

 • Engagement: Consult and partner with critical stakeholders, especially 
within the private sector, which is likely to be a major source of invest-
ment and innovation

 • Strategic direction-setting: Develop and execute a strategy for data 
science and AI that:

 • Sets the regulatory framework governing use of personal data in 
health (and other settings)
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 • Defines the investment budget and plan, the size and scale of which 
will depend on the conditions of the local health system and model 
of government (there are other permutations of government)

 • Is consistent with existing government strategies relating to health 
and digitization.

 • An advisory board: Set up a national policy group for data and infor-
matics to provide guidance and advice. This board would have technical 
and academic expertise covering: data set creation, data value, informa-
tion governance, data security, data integration, capability building, and 
enabling the use and reuse of data for multiple ends. This board could also 
include patient and clinician representatives to ensure that the strategy 
is shaped by the priorities and concerns of these critical constituencies.

2. Identify and gain ‘quick win’ opportunities (first 
12 months)

Ideally, one team within the policy group would focus on finding opportuni-
ties for showing an impact in the first 12 months. These ‘quick wins’ could 
build on existing data systems and processes or borrow from other countries’ 
successes. The team could create a portfolio of high-value, high-feasibility 
projects by assessing the ease, speed and cost of implementing an idea, 
against its potential impact. These quick wins will bring benefits to the health 
system quickly, and they will also build positive public engagement and trust 
for longer-term, more significant changes.

Example quick win opportunities might include:72

 • Launching apps that give patients on-demand video consultations with 
primary care providers, or launching chatbots to guide patients to appro-
priate primary care resources

 • Adding AI-supported diagnostics to radiology, especially where these 
reduce waiting times for the scan and the results

 • Using triage algorithms in emergency departments to improve flow, reduce 
waiting times and keep patients informed.

In many health systems, the single most valuable quick win may be to reform 
regulations to permit cloud-based data storage. Cloud-based storage can 
currently offer cheaper, secure data hosting, provided there are checks to 
ensure that personal data are only accessible to the right users (including the 
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patient). Many systems are already making this transition, including Estonia, 
Scotland, Switzerland and individual health systems in the US. This shift could 
have an immediate and dramatic effect on the costs and lead times for data 
integration for clinical care and research.

3. Set strategic priorities for the medium term 
(one to three years)

With national leadership in place and stakeholder engagement underway, poli-
cymakers can develop plans for the next three years. While initiatives will need 
to be tailored to the existing level of digital maturity, in all systems the critical 
areas to get right include:

 • Digitization and integration of data:

 • Agree and mandate the use of basic data formats and standards 
(for example, for images, medicines and dosage syntax, and for oper-
ational data), mutually compatible EHRs and ePrescribing tools within 
the healthcare system

 • Develop plans to scale existing data sets to a country- or system-level 
where possible

 • Set up a strategy group to decide how to link different data sets 
across systems and regions. First steps could include creating unique 
patient IDs, or starting to link data sets such as primary and secondary 
health records with mortality data and social care data.

 • Data governance and stewardship:

 • Establish more permanent structures to maintain the regulatory frame-
work covering personal data sharing and security. This is a priority for 
many countries – even three years ago, only 17 percent of the World 
Health Organization’s (WHO) member states had a policy or strategy 
for the use of big data in health. Steps could include:

 • Appointing a chief information/data security officer and strategy 
sub-group to manage the protection and security of health data

 • Developing the regulatory infrastructure for information govern-
ance and data protection – for example, deciding where and 
how information should be hosted, who defines access permis-
sions and permissible uses, and how to manage data breaches 
when they occur
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 • Enacting legislation permitting patient data to be securely 
hosted in the cloud

 • Developing a comprehensive set of policies to manage consent 
for data use and reuse and, where possible, move to broad 
consent models in research and routine clinical care. Poli-
cies will need to cover the legal basis for consent and the 
processes by which organizations record and store an individu-
al’s consent status.

 • Capabilities and skills:

 • Promote centers of excellence (see Figure 9) in several clinical hubs 
serving large populations, and mandate the use of consistent systems 
and data formats between the centers

 • Establish innovation hubs with appropriate levels of access to data to 
catalyze private companies and start-ups co-located around centers 
of excellence.73

4. Pursue a longer-term transformation plan (three 
to 10 years)

 • The longer-term plan can focus on continually improving data inte-
gration, refining regulatory frameworks and building capabilities. 
Actions could include:

 • Continually improving data integration:

 • Expand from EHRs to patient-controlled personal health records 
(PHRs), which give access and ownership of data to patients 
and combine information from health systems with data from 
patients themselves

 • Build institutional, regional and international relationships to dissemi-
nate knowledge and learn from best practice in the construction, use 
and maintenance of big health data sets. In the longer term, there is 
the potential for sharing data across country boundaries for research 
purposes and for clinical care received abroad

 • Continue to refine and improve common data formats and quality 
control processes.
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 • Refining regulatory frameworks:

 • Enable patients and providers to trace who uses their data and for 
what purpose (including automated notifications), and demonstrate 
commitment to enforcing serious sanctions and penalties for data 
misuse, with ongoing public debate around this topic where needed 
to maintain trust

 • Make fast-track pathways in the regulatory approval system available 
for specific certain cases

 • Continue to publicize data-driven improvements to care quality 
and efficiency.

 • Building capabilities:

 • Embed statistics, informatics and data science as part of all education 
programs, from primary to tertiary education

 • Create training programs and specific innovation grants for research 
that brings together data science and healthcare, with a focus on 
collaboration with clinicians

 • Fund programs to train junior academics for data science roles in the 
healthcare industry.

Health systems delivering quick wins and setting these clear strategic priori-
ties will be better able to exploit the potential of data science and AI. Public 
engagement and communication must continue throughout the process. 
The public’s valid concerns over the sharing and use of their data must be 
acknowledged. However, the benefits of data science and AI in health are too 
great to risk inaction.
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GLOSSARY

Algorithm
A set of instructions that are followed to reach an outcome, decision 
or recommendation.

Artificial intelligence (AI)
A broad term encompassing machine learning, computer vision, natural 
language processing (NLP), virtual assistants and automated robotics. The 
science of making computers learn from data and interact with the human world.

Big data
Very large data sets that exceed the storage capacity or processing power of 
traditional tools. Big data “represents the information assets characterized by 
such a high volume, velocity and variety to require specific technology and 
analytical methods for its transformation into value,”74 and its prevalence is 
growing as the ability to collect large amounts of data in real time from users 
or consumers of products and services increases.

Blockchain
A blockchain is a decentralized computer network designed to perform trans-
actions that are incorruptible, irreversible, transparent and verifiable, and 
redundantly stored. This technique allows for clear audit trails in data – each 
interaction with data is appended to the chain, cannot be removed, and in 
a manner where any tampering with the chain is detectable.

Computer vision
The science of processing, interpreting, labeling and extracting informa-
tion from images. This might range from analyzing MRI scans to measuring 
blood-flow rates to processing the input to an autonomous vehicle.

Data science
The methods, processes and systems used to analyze, understand and draw 
insights from large and complex data sets.

Deep learning
A machine-learning method that consists of multiple layers of nonlinear 
processing units. Each layer uses the output of the previous layer as an input. 
This hierarchical structure encourages the formation of multiscale representa-
tions of the system, naturally extracting relevant features from the data.
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Governance
The institutional configuration of legal, professional and behavioral norms of 
conduct, conventions and practices that, taken together, govern the collec-
tion, storage, use and transfer of data and the institutional mechanisms by and 
through which those norms are established and enforced.

Machine learning
Techniques to allow a machine to learn approaches to solving problems 
directly from the input data, without being explicitly programmed or using 
specific models for the task.

Metadata
‘Data about data’, contains information about a data set. For example, this 
information could include why and how the original data was generated, who 
created it and when. Metadata may also be technical, describing the original 
data’s structure, licensing terms and the standards it conforms to.

Natural language processing (NLP)
Tools that can understand, process, extract or output information as intelli-
gible human language. Examples include Twitter chatbots and Amazon’s Alexa 
home assistant app.

Neural network
A machine-learning method using a series of simple, nonlinear processing 
units, taking inspiration from biological neurons. Neural networks can describe 
arbitrary nonlinear functions, but their design makes them easy to fit on 
large data sets.

Personally identifiable information
Information that could be used to identify an individual, or assign a particular 
record to a specific person. This includes names, dates of births, health 
record IDs, social security numbers and images of faces. The use and dissem-
ination of identifiable information is protected to varying degrees by data 
protection laws. Most tools and devices that use medical information can be 
developed using anonymized data sets, in which identifiable information has 
been removed.

Reinforcement learning
A technique for training machines that operate within dynamic environments. 
Rather than ascribing values or penalties to every action the machine makes 
(for example, a move in chess), the only feedback given is a measure of cumula-
tive reward (the outcome of the game). As it learns, the machine must balance 
the need to explore new situations against the benefit of using past experience. 



43DATA SCIENCE AND AI

Reinforcement learning agents can learn just by their own process of explora-
tion. Deepmind’s AlphaGo Zero recently became the world’s best player at 
the ancient Chinese game of Go, just by playing against itself.75

Sensitive data
Data that individuals would not wish to be shared – for example, salary informa-
tion or disease diagnoses. Precise legal definitions vary by jurisdiction.

Supervised learning
An approach for training machine-learning systems on data sets where the 
desired output of the system has been labeled (often by a human) in at least 
some cases. The machine learns to predict the labeled outputs as best it can 
from the other data available.

Unsupervised learning
The task of learning the structure of a data set that has no categorizations 
externally imposed on it or clear output variables assigned to it. One purpose 
is the extraction of natural features to describe or represent the data – for 
example, identification of clusters of data points.
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